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Generalized 2-absorbing submodules

F. Farshadifar∗ and H. Ansari-Toroghy

Abstract

In this paper, we will introduce the concepts of generalized 2-absorbing
submodules of modules over a commutative ring as generalizations of 2-
absorbing submodules and obtain some related results.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity, Z and
N will denote respectively the ring of integers and the set of natural numbers.

Let M be an R-module. A proper submodule P of M is said to be prime
if for any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M)
[7].

Badawi gave a generalization of prime ideals in [3] and said such ideals 2-
absorbing ideals. A proper ideal I of R is a 2-absorbing ideal of R if whenever
a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. He proved that I is
a 2-absorbing ideal of R if and only if whenever I1, I2, and I3 are ideals of R
with I1I2I3 ⊆ I, then I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I. In [4], the authors
introduced the concept of 2-absorbing primary ideal which is a generalization
of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal
of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈

√
I or bc ∈

√
I.

The authors in [6] and [12], extended 2-absorbing ideals to 2-absorbing
submodules. A proper submodule N of M is called a 2-absorbing submodule
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of M if whenever abm ∈ N for some a, b ∈ R and m ∈ M , then am ∈ N or
bm ∈ N or ab ∈ (N :R M).

The purpose of this paper is to introduce the concepts of generalized 2-
absorbing submodules of an R-module M as a generalizations of 2-absorbing
submodules of M and investigate some properties of this class of modules.

2 Generalized 2-absorbing submodules

Definition 2.1. We say that a proper submodule N of an R-module M
is a generalized 2-absorbing submodule or G2-absorbing submodule of M if
whenever a, b ∈ R, m ∈ M and abm ∈ N , then a ∈

√
(N :R m) or b ∈√

(N :R m) or ab ∈ (N :R M).

Example 2.2. Clearly every 2-absorbing submodule is a G2-absorbing sub-
module. But the converse is not true in general. For example, the submodule
8Z of the Z-module Z is a G2-absorbing submodule which is not a 2-absorbing
submodule. Also, the submodule 〈1/p+Z〉 of Zp∞ , where p is a prime number,
is a G2-absorbing submodule which is not a 2-absorbing submodule.

Example 2.3. Consider the submodule N = 0 of the Z-module M = Z42.
We have 2.3.7̄ = 0 while 2i.7̄ 6= 0, 3j .7̄ 6= 0, and 2.3 6∈ (0 :Z M) = 42Z for all
i, j ∈ N. Thus the submodule N of M , is not G2-absorbing submodule.

Lemma 2.4. Let I be an ideal of R and N be a G2-absorbing submodule of
M . If a ∈ R, m ∈M and Iam ⊆ N , then a ∈

√
(N :R m) or I ⊆

√
(N :R m)

or Ia ⊆ (N :R M).

Proof. Let a 6∈
√

(N :R m) and Ia 6⊆ (N :R M). Then there exists b ∈ I such

that ba 6∈ (N :R M). Now, bam ∈ N implies that b ∈
√

(N :R m), since N

is a G2-absorbing submodule of M . We have to show that I ⊆
√

(N :R m).
Let c be an arbitrary element of I. Thus (b + c)am ∈ N . Hence, either
b + c ∈

√
(N :R m) or (b + c)a ∈ (N :R M). If b + c ∈

√
(N :R m), then by

b ∈
√

(N :R m) it follows that c ∈
√

(N :R m). If (b + c)a ∈ (N :R M), then

ca 6∈ (N :R M), but cam ∈ N . Thus c ∈
√

(N :R m). Hence, we conclude

that I ⊆
√

(N :R m).

Lemma 2.5. Let I, J be ideals of R and N be a G2-absorbing submodule of
M . If m ∈ M and IJm ⊆ N , then I ⊆

√
(N :R m) or J ⊆

√
(N :R m) or

IJ ⊆ (N :R M).

Proof. Let I 6⊆
√

(N :R m) or J 6⊆
√

(N :R m). We have to show that IJ ⊆
(N :R M). Assume that c ∈ I and d ∈ J . By assumption there exists a ∈ I
such that a 6∈

√
(N :R m) but aJm ⊆ N . Now, Lemma 2.4, shows that
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aJ ⊆ (N :R M) and so (I \
√

(N :R m))J ⊆ (N :R M), similarly there exists

b ∈ J \
√

(N :R m) such that Ib ⊆ (N :R M) and also I(J \
√

(N :R m)) ⊆
(N :R M). Thus we have ab ∈ (N :R M), ad ∈ (N :R M) and cb ∈ (N :R M).
By a + c ∈ I and b + d ∈ J it follows that (a + c)(b + d)m ∈ N . Therefore,
a + c ∈

√
(N :R m) or b + d ∈

√
(N :R m) or (a + c)(b + d) ∈ (N :R M). If

a + c ∈
√

(N :R m), then c 6∈
√

(N :R m) hence, c ∈ I \
√

(N :R m) which

implies that cd ∈ (N :R M). Similarly by (b+d) ∈
√

(N :R m), we can deduce
that cd ∈ (N :R M). If (a + c)(b + d) ∈ (N :R M), then ab + ad + cb + cd ∈
(N :R M) and so cd ∈ (N :R M). Therefore, IJ ⊆ (N :R M).

Theorem 2.6. Let N be a proper submodule of M . The following statement
are equivalent:

(a) N is a G2-absorbing submodule of M ;

(b) If IJL ⊆ N for some ideals I, J of R and a submodule L of M , then
I ⊆

√
(N :R L) or J ⊆

√
(N :R L) or IJ ⊆ (N :R M).

Proof. (a) ⇒ (b) Let IJL ⊆ N for some ideals I, J of R, a submodule L
of M and IJ 6⊆ (N :R M). Then by Lemma 2.5, for all m ∈ L either
I ⊆

√
(N :R m) or J ⊆

√
(N :R m). If I ⊆

√
(N :R m), for all m ∈ L we

are done. Similarly if J ⊆
√

(N :R m), for all m ∈ L we are done. Suppose

that m,m0 ∈ L are such that I 6⊆
√

(N :R m) or J 6⊆
√

(N :R m0). Thus

J ⊆
√

(N :R m) and I ⊆
√

(N :R m0). Since IJ(m+m0) ⊆ N we have either

I ⊆
√

(N :R m + m0) or J ⊆
√

(N :R m + m0). By I ⊆
√

(N :R m + m0),

it follows that I ⊆
√

(N :R m) which is a contradiction, similarly by J ⊆√
(N :R m + m0) we get a contradiction. Therefore either I ⊆

√
(N :R L) or

J ⊆
√

(N :R L).
(b)⇒ (a) This is obvious.

Proposition 2.7. Let N be a G2-absorbing submodule of an R-module M .
Then we have the following.

(a) If K is a submodule of M such that K 6⊆ N , then (N :R K) is a 2-
absorbing primary ideal of R.

(b) (N :R M) is a 2-absorbing primary ideal of R.

Proof. (a) Let a, b, c ∈ R and abc ∈ (N :R K). Then atcK ⊆ N for some
positive integer t or bscK ⊆ N for some positive integer s or abM ⊆ N since
N is a G2-absorbing submodule of M . Therefore, (ac)tK ⊆ N or (bc)sK ⊆ N
or abK ⊆ N as needed.

(b) Since N is a proper submodule of M , this follows from part (a)
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Corollary 2.8. Let N be a G2-absorbing submodule of an R-module M .
Then

√
(N :R M) is a 2-absorbing ideal of R.

Proof. By Proposition 2.7 (b), (N :R M) is a 2-absorbing primary ideal of
R. Thus, by [4, Theorem 2.2], we have

√
(N :R M) is a 2-absorbing ideal of

R.

An R-module M is said to be a multiplication module if for every submodule
N of M there exists an ideal I of R such that N = IM [5].

Corollary 2.9. Let M be a multiplication R-module. If N is a G2-absorbing
submodule of M such that

√
(N :R M) = (N :R M), then N is a 2-absorbing

submodule of M .

Proof. By Proposition 2.7 (b), (N :R M) is a 2-absorbing primary ideal of R.
Thus

√
(N :R M) = (N :R M) is a 2-absorbing ideal of R by [4, 2.2.]. Now

the result follows from [2, 3.9].

Let N be a submodule of an R-module M . The intersection of all prime
submodules of M containing N is said to be the (prime) radical of N and
denote by rad(N). In case N does not contained in any prime submodule, the
radical of N is defined to be M [10].

A proper submodule N of an R-module M is said to be a 2-absorbing
primary submodule of M if whenever a, b ∈ R, m ∈ M , and abm ∈ N , then
am ∈ rad(N) or bm ∈ rad(N) or ab ∈ (N :R M) [11].

Theorem 2.10. Let M be a multiplication R-module and N be a G2-absorbing
submodule of M . Then N is a 2-absorbing primary submodule of M .

Proof. Let a, b ∈ R, m ∈M , and abm ∈ N . Then we have atm ∈ N for some
positive integer t or bsm ∈ N for some positive integer s or abM ⊆ N . If
abM ⊆ N , then we are done. Suppose that atm ∈ N for some positive integer
t. As M is a multiplication R-module, Rm = IM for some ideal I of R. Thus
atIM ⊆ N . This implies that Ia ⊆

√
(N :R M). Thus

aRm = aIM ⊆
√

(N :R M)M ⊆ (rad(N) :R M)M ⊆ rad(N).

Hence am ∈ rad(N), as needed.

Corollary 2.11. Let M be a finitely generated multiplication R-module. If N
is a G2-absorbing submodule of M , then rad(N) is a 2-absorbing submodule
of M .

Proof. By Theorem 2.10, N is a is a 2-absorbing primary submodule of M .
Now the result follows from [11, 2.6].
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Proposition 2.12. Let N be a G2-absorbing submodule of an R-module
M . Then (N :M r) is a G2-absorbing submodule of M containing N for any
r ∈ R \ (N :R M).

Proof. Let r ∈ R \ (N :R M). Suppose that a, b ∈ R and m ∈ M such that
abm ∈ (N :M r). Then rabm ∈ N . Since N is a G2-absorbing submodule of
M , either atrm ∈ N or bsrm ∈ N for some t, s ∈ N or ab ∈ (N :R M). Thus
atm ∈ (N :M r) or bsm ∈ (N :M r) or ab ∈ (N :R M) ⊆ ((N :M r) :R M) as
required.

Proposition 2.13. Let M and Ḿ be R-modules and f : M → Ḿ be an
epimorphism. Then we have the following.

(a) If N is a G2-absorbing submodule of M such that ker(f) ⊆ N , then
f(N) is a G2-absorbing submodule of Ḿ .

(b) If Ń is a G2-absorbing submodule of Ḿ , then f−1(Ń) is a G2-absorbing
submodule of M .

Proof. (a) If f(N) = Ḿ , then

Ker(f) + N = f−1(f(N)) = f−1(Ḿ) = f−1(f(M)) = M.

Thus N = M a contradiction. Hence f(N) 6= Ḿ . Now let a, b ∈ R and y ∈ Ḿ
such that aby ∈ f(N). Then there exists n ∈ N such that aby = f(n). Since f
is an epimorphism, we have f(m) = y for some m ∈M . Thus abf(m) = f(n).
This implies that f(abm−n) = 0 which gives that abm−n ∈ ker(f) ⊆ N . So
abm ∈ N . Since N is a G2-absorbing submodule of M , atm ∈ N or bsm ∈ N
for some t, s ∈ N or ab ∈ (N :R M). Therefore, aty ∈ f(N) or bsy ∈ f(N) or
ab ∈ (f(N) :R Ḿ). Thus f(N) is a G2-absorbing submodule of Ḿ .

(b) If f−1(Ń) = M , then

f(M) ∩ Ń = f(f−1(Ń)) = f(M) = Ḿ.

Thus Ń = Ḿ a contradiction. Hence f−1(Ń) 6= M . Now let a, b ∈ R and
m ∈M such that abm ∈ f−1(Ń). Then abf(m) ∈ f(f−1(Ń)) = Ń . Since Ń is
a G2-absorbing submodule of M , atf(m) ∈ Ń or bsf(m) ∈ Ń for some t, s ∈ N
or abḾ ⊆ Ń . Therefore, atm ∈ f−1(Ń) or bsm ∈ f−1(Ń) or abM ⊆ f−1(Ń).
Thus f−1(Ń) is a G2-absorbing submodule of M .

Recall that the set of zero divisors of an R-module M ; denoted by Z(M)
is defined by Z(M) = {r ∈ R : ∃0 6= x ∈M, rx = 0}.

Theorem 2.14. Let S be a multiplicatively closed subset of R and S−1M be
the module of fraction of an R-module M . Then the we have the following.
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(a) If N is a G2-absorbing submodule of M such that (N :R M) ∩ S = ∅,
then S−1N is a G2-absorbing submodule of S−1M .

(b) If S−1N is a G2-absorbing submodule of S−1M such that Z(M/N)∩S =
∅, then N is a G2-absorbing submodule of M .

Proof. (a) Assume that a, b ∈ R, s, t, l ∈ S, m ∈ M and (a/s)(b/t)(m/l) ∈
S−1N which implies uabm ∈ N for some u ∈ S. Since N is a G2-absorbing
submodule of M , apum ∈ N or bqum ∈ N for some p, q ∈ N or ab ∈
(N :R M). Hence (a/s)p(m/l) = (apmu)/(splu) ∈ S−1N or (b/t)q(m/l) =
(bqmu)/(tqlu) ∈ S−1N or ab/st ∈ S−1(N :R M) ⊆ (S−1N :S−1R S−1M). So,
S−1N is a G2-absorbing submodule of S−1M .

(b) First note that (S−1N :S−1R S−1M) = S−1(N :R M) because Z(M/N)∩
S = ∅. Let a, b ∈ R and m ∈M be such that abm ∈ N . Then abm/1 ∈ S−1N .
Since S−1N is a G2-absorbing submodule of S−1M , either (a/1)p(m/1) ∈
S−1N or (b/1)q(m/1) ∈ S−1N for some p, q ∈ N or ab/1 ∈ (S−1N :S−1R

S−1M). If ab/1 ∈ (S−1N :S−1R S−1M), then ab/1 ∈ S−1(N :R M) and
we are done. Otherwise, there exists s ∈ S such that sapm ∈ N or there
exists t ∈ S such that tbqm ∈ N . This implies apm ∈ N or bqm ∈ N , since
S ∩ Z(M/N) = ∅. Hence N is a G2-absorbing submodule of M .

3 G2-Absorbing submodules over Noetherian rings

A submodule N of an R-module M is said to be idempotent if N = (N :R
M)2M). Also, M is said to be fully idempotent if every submodule of M is
idempotent [1]. Clearly, every fully idempotent R-module is a multiplication
R-module.

Theorem 3.1. Let R be a Noetherian ring and N be a submodule of a fully
idempotent R-module M . If (N :R M) is a 2-absorbing primary ideal of R,
then N is a G2-absorbing submodule of M .

Proof. Let a, b ∈ R, K be a submodule of M , and abK ⊆ N . Then we have
ab(K :R M)M ⊆ N . Thus by [4, 2.18], either a(K :R M)M ⊆

√
(N :R M)

or b(K :R M)M ⊆
√

(N :R M) or ab ∈ (N :R M) since (N :R M) is a 2-
absorbing primary ideal of R. If ab ∈ (N :R M), then we are done. Otherwise,
since R is Noetherian, (a(K :R M))tM ⊆ N for some positive integer t or
(b(K :R M))sM ⊆ N for some positive integer s. Thus (a(K :R M))tM ⊆ N
or (b(K :R M))sM ⊆ N , then at(K :R M)tM ⊆ (N :R M)M = N or
bs(K :R M)sM ⊆ (N :R M)M = N because M is a multiplication R-module.
Hence, atK ⊆ N or bsK ⊆ N since M is a fully idempotent R-module.
Therefore, N is a G2-absorbing submodule of M .
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The following example shows that Theorem 3.1 (a) is not satisfied in gen-
eral.

Example 3.2. The Z-module M = Q is not a fully idempotent Z-module.
Set N = Z. Then we have 3.2.(1/6) ∈ Z while 3i.(1/6) 6∈ Z, 2j .(1/6) 6∈ Z,
and 2.3 6∈ (Z :Z Q) = 0 for all i, j ∈ N. Thus the submodule N of M is not
G2-absorbing submodule. But (N :Z M) = 0 is a 2-absorbing primary ideal
of Z.

Let Ri be a commutative ring with identity and Mi be an Ri-module, for
i = 1, 2. Let R = R1 × R2. Then M = M1 ×M2 is an R-module and each
submodule of M is in the form of N = N1 × N2 for some submodules N1 of
M1 and N2 of M2.

Lemma 3.3. Let R = R1 × R2 and M = M1 × M2. Then Mi is a fully
idempotent Ri-module, for i = 1, 2 if and only if M is a fully idempotent
R-module.

Proof. First suppose that M is a fully idempotent R-module and N1 is a
submodule of an R1-module M1. Then N = N1 × 0 is a submodule of M .
Thus N = (N :R M)2M = (N1 :R1

M1)2M1 × (0 :R2
M2)2M2. Hence N1 =

(N1 :R1 M1)2M1. Therefore, M1 is a fully idempotent R1-module. Similarly,
M2 is a fully idempotent R2-module. Conversely, let N be a submodule of
M . Then N = N1 × N2 for some submodules N1 of M1 and N2 of M2. By
assumption, Ni = (Ni :Ri

Mi)
2Mi for i = 1, 2. So

N = (N1 :R1
M1)2M1 × (N2 :R2

M2)2M2 = (N :R M)2M,

as request.

Theorem 3.4. Let R = R1 × R2 be a Noetherian ring and M = M1 ×M2,
where M1 is a fully idempotent R1-module and M2 is a fully idempotent R2-
module. Then we have the following.

(a) A proper submodule K1 of M1 is a G2-absorbing submodule if and only
if N = K1 ×M2 is a G2-absorbing submodule of M .

(b) A proper submodule K2 of M2 is a G2-absorbing submodule if and only
if N = M1 ×K2 is a G2-absorbing submodule of M .

(c) If K1 is a primary submodule of M1 and K2 is a primary submodule of
M2, then N = K1 ×K2 is a G2-absorbing submodule of M .

Proof. (a) Let K1 be a G2-absorbing submodule of M1. Then (K1 :R1
M1)

is a 2-absorbing primary ideal of R1 by Proposition 2.7. Now since (N :R
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M) = (K1 :R1 M1) × R2, we have (N :R M) is a 2-absorbing primary ideal
of R by [4, 2.23]. Thus the result follows from Lemma 3.3 and Theorem 3.1.
Conversely, let N = K1 × M2 be a G2-absorbing submodule of M . Then
(N :R M) = (K1 :R1

M1) × R2 is a primary ideal of R by Proposition 2.7.
Thus (K1 :R1

M1) is a primary ideal of R1 by [4, 2.23]. Hence by Theorem
3.1, K1 is a G2-absorbing submodule of M1.

(b) This is proved similar to the part (a).
(c) Let K1 be a primary submodule of M1 and K2 be a primary submodule

of M2. Then (K1 :R1
M1) and (K2 :R2

M2) are primary ideals of R1 and R2,
respectively. Now since (N :R M) = (K1 :R1

M1) × (K2 :R2
M2), we have

(N :R M) is a 2-absorbing primary ideal of R by [4, 2.23]. Thus the result
follows from Theorem 3.1.

Theorem 3.5. Let R = R1 × R2 be a Noetherian ring and M = M1 ×M2

be a fully idempotent R-module, where M1 is an R1-module and M2 is an R2-
module. Suppose that N = N1 × N2 is a proper submodule of M . Then the
following conditions are equivalent:

(a) N is a G2-absorbing submodule of M ;

(b) Either N1 = M1 and N2 is a G2-absorbing submodule of M2 or N2 =
M2 and N1 is a G2-absorbing submodule of M1 or N1, N2 are primary
submodules of M1, M2, respectively.

Proof. (a)⇒ (b). Let N = N1×N2 be a G2-absorbing submodule of M . Then
(N :R M) = (K1 :R1 M1) × (K2 :R2 M2) is a 2-absorbing primary ideal of R
by Proposition 2.7. By [4, 2.23], we have (K1 :R1 M1) = R1 and (K2 :R2 M2)
is a 2-absorbing primary ideal of R2 or (K2 :R2

M2) = R2 and (K1 :R1
M1)

is a 2-absorbing primary ideal of R1 or (K1 :R1
M1) and (K2 :R2

M2) are
primary ideals of R1 and R2, respectively. Suppose that (K1 :R1

M1) = R1

and (K2 :R2 M2) is a 2-absorbing primary ideal of R2. Then N1 = M1 and N2

is a G2-absorbing submodule of M2 by Theorem 3.4 and Lemma 3.3. Similarly
if (K2 :R2

M2) = R2 and (K1 :R1
M1) is a 2-absorbing primary ideal of R1.

Then N2 = M2 and N1 is a G2-absorbing submodule of M1. If the last case
hold, then as M1 (resp. M2) is a multiplication R1-(resp. R2-) module, N1

(resp. N2) is a primary submodule of M1 (resp. M2) by [8, Corollary 2].
(b)⇒ (a). This can be proved easily by using Theorem 3.4.

Theorem 3.6. Let R be a Noetherian ring, N be a G2-absorbing submodule
of an R-module M , and m ∈M \N . Then

√
(N :R m) is a prime ideal of R

or there exists an element a ∈ R such that
√

(N :R anm) is a prime ideal of
R for some positive integer n.



Generalized 2-absorbing submodules 107

Proof. By Corollary 2.8,
√

(N :R M) is a 2-absorbing ideal of R, therefore by

[4, Theorem 2.3], we have either
√

(N :R M) = p or
√

(N :R M) = p ∩ q,

where p and q are distinct prime ideals of R. Suppose that
√

(N :R M) = p.

Then p =
√

(N :R M) ⊆
√

(N :R m). We show that
√

(N :R m) is a prime

ideal of R. Let ab ∈
√

(N :R m) for some a, b ∈ R. Then (ab)n ∈ (N :R m)
implies (ab)nm ∈ N . As N is a G2-absorbing submodule of M , then either
antm ∈ N or bnsm ∈ N for some t, s ∈ N or (ab)n ∈ (N :R M). If antm ∈ N
or bnsm ∈ N , then a ∈

√
(N :R m) or b ∈

√
(N :R m). If (ab)n ∈ (N :R M),

then ab ∈ p. Since p is prime ideal of R, then either a ∈ p ⊆
√

(N :R m)

or b ∈ p ⊆
√

(N :R m). Therefore,
√

(N :R m) is a prime ideal of R. Now

suppose that
√

(N :R M) = p ∩ q. If p ⊆
√

(N :R m), then by previous

argument, we have
√

(N :R m) is a prime ideal of R. If p 6⊆
√

(N :R m), then

there exists a ∈ p \
√

(N :R m). Also,

pq ⊆ √pq =
√
p ∩ q =

√
(N :R M) ⊆

√
(N :R m).

Now since R is Noetherian, there exists n ∈ N such that (pq)n ⊆ (N :R
m). This implies that q ⊆

√
(N :R anm) and the result follows by a similar

argument.

Now, we study G2-absorbing avoidance Theorem for submodules. We first
define an efficient covering of submodules: let N,N1, N2, ..., Nn be submodules
of an R-module M . An efficient covering of N is a covering N ⊆ N1 ∪ N2 ∪
...∪Nn in which no Nk (where 1 ≤ k ≤ n) satisfies N ⊆ Nk. In other words, a
covering N ⊆ N1∪N2∪...∪Nn is efficient if no Nk is superfluous. Analogously,
we say that N = N1∪N2∪...∪Nn is an efficient union if none of the Ni may be
excluded. Any cover or union consisting of submodules of M can be reduced
to an efficient one, called an efficient reduction, by deleting any unnecessary
terms.

To proceed further, we require the following lemma.

Lemma 3.7. [9, Lemma 2.1]. Let N = N1 ∪ ... ∪Nn be an efficient union of
submodules of an R-module M for n > 1. Then ∩j 6=kNj = ∩nj=1Nj for all k.

Theorem 3.8. Let R be a Noetherian ring and N ⊆ N1 ∪N2 ∪ ...∪Nn be an
efficient covering consisting of submodules of an R-module M , where n > 2.
If

√
(Nj :R M) 6⊆

√
(Nk :R m) for all m ∈ M \ Nk whenever j 6= k, then no

Ni is a G2-absorbing submodule of M .

Proof. Suppose Nk is a G2-absorbing submodule of M for some 1 ≤ k ≤ n,
and look for a contradiction. Since N ⊆ N1 ∪ N2 ∪ ... ∪ Nn is an efficient
covering, N 6⊆ Nk, so there exists an element mk ∈ N \ Nk. It is clear
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that N = (N1 ∩ N) ∪ (N2 ∩ N) ∪ ... ∪ (Nn ∩ N) is an efficient union. By
Lemma 3.7, we have ∩j 6=k(N ∩ Nj) ⊆ N ∩ Nk. By using Theorem 3.6, we

have either
√

(Nk :R mk) is a prime ideal of R or there exists a ∈ R such

that
√

(Nk :R anmk) is a prime ideal of R. First, suppose that
√

(Nk :R mk)

is a prime ideal. By the given hypothesis
√

(Nj :R M) 6⊆
√

(Nk :R mk) for

j 6= k. So, there exists sj ∈
√

(Nj :R M) but sj 6∈ (
√
Nk :R mk), where

j 6= k. This implies that s
nj

j ∈ (Nj :R M) but s
nj

j 6∈ (Nk :R mk) where

j 6= k and nj ∈ N. Let s =
∏

j 6=k sj . Then s ∈
√

(Nj :R M) but s 6∈√
(Nk :R mk) where j 6= k. Therefore, sm ∈ (Nj :R M) for all j 6= k but sm 6∈

(Nk :R mk), where m = max{n1, n2, ..., nk−1, nk+1, ..., nn}. Thus smmk ∈
∩j 6=k(N ∩Nj) \ (N ∩Nk), since smmk ∈ N ∩Nk implies sm ∈ (Nk :R mk), a
contradiction. So, no Nk is a G2-absorbing submodule of M . Now, consider
the case when

√
(Nk :R anmk) is a prime ideal, where n is positive integer

and a ∈ R. Clearly, sj ∈
√

(Nj :R M) but sj 6∈
√

(Nk :R anmk), where j 6= k.
Therefore, smanmk ∈ ∩j 6=k(N∩Nj)\(N∩Nk), since smanmk ∈ N∩Nk implies
sm ∈ (Nk :R anmk), a contradiction. So, no Nk is G2-absorbing submodule
of M .

Theorem 3.9. (G2-Absorbing Avoidance Theorem). Let R be a Noetherian
ring and N,N1, ..., Nn (n ≥ 2) be submodules of an R-module M such that
at most two of N1, N2, ..., Nn are not G2-absorbing submodules. If N ⊆ N1 ∪
N2 ∪ ... ∪Nn and

√
(Nj :R M) 6⊆

√
(Nk :R m) for all m ∈ M \Nk whenever

j 6= k, then N ⊆ Ni for some 1 ≤ i ≤ n.

Proof. If n = 2, then it is obvious. Now, take n > 2 and N 6⊆ Ni for all
1 ≤ i ≤ n. Then N ⊆ N1 ∪ N2 ∪ ... ∪ Nn is an efficient covering. Using
Theorem 3.8, no Ni is a G2-absorbing submodule, which is a contradiction.
Hence N ⊆ Ni for some 1 ≤ i ≤ n.
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